博客
关于我
Algorithm: K-Means
阅读量:373 次
发布时间:2019-03-04

本文共 4531 字,大约阅读时间需要 15 分钟。

K-Means

The K-Means is  an unsupervised learning algorithm which has the input sample data without label.

Sometimes we use the CRM system to manage the relationship between the customer. The concept is clustering

 

 

The application of clustering: 

 

It can also be used to compress the images

 

The concept of K-mean:

1. rearange each sample to the nearest category by compare the distances.

2. for each category we calculate the center point.

For K = 2

We choose two center point randomly

We clustering each example to each category respect to the center points.

Then we recalculate the center point by the calculating the mean coordinate of each points of the respect cluster(category.)

We use the new center points for clustering.

Then we recalculate the center point again.

And we do the cluster again:

If the new center point is the same as the previous iteration, then we can stop the calculation for converge.

 

Python Implementation for K-Mean

# import packagefrom copy import deepcopyimport numpy as npimport pandas as pdimport matplotlib.pyplot as plt# set paramter k for K-meansk = 3# randomize the center point. and save the result into CX = np.random.random((200, 2)) * 10C_x = np.random.choice(range(0, int(np.max(X[:, 0]))), size = k, replace = False)C_y = np.random.choice(range(0, int(np.max(X[:, 1]))), size = k, replace = False)C = np.array(list(zip(C_x, C_y)), dtype = np.float32)print("The init center point is :")print(C)# plot the center pointplt.scatter(X[:, 0], X[:, 1], c = '#050505', s = 7)plt.scatter(C[:, 0], C[:, 1], marker = '*', s = 300, c = 'g')plt.show()

 

# store the previous center pointC_old = np.zeros(C.shape)clusters = np.zeros(len(X))# calculate the distancedef dist(a, b, ax = 1):    return np.linalg.norm(a - b, axis = ax)error = dist(C, C_old, None)# iteration for K-mean clustering until converge(that is the error = 0)while error != 0:    # Assigning each value to its closest cluster    for i in range(len(X)):        distances = dist(X[i], C)        category = np.argmin(distances)        clusters[i] = category        # We save the old center points    C_old = deepcopy(C)    # and calculate the new center points    for i in range(k):        points = [X[j] for j in range(len(X)) if clusters[j] == i]        C[i] = np.mean(points, axis = 0)    error = dist(C, C_old, None)# plot the clusterscolors = ['r', 'g', 'b', 'y', 'c', 'm']fig, ax = plt.subplots()for i in range(k):    points = np.array([X[j] for j in range(len(X)) if clusters[j] == i])    ax.scatter(points[:, 0], points[:, 1], s = 7, c = colors[i])ax.scatter(C[:, 0], C[:, 1], marker = '*', s = 200, c = '#050505')plt.show()

 

K-Means in detail

 

What is the object function os K-mean?

At first ,we don't known the cluster and the center point, how do we define the loss function?

we obtain two parameters γ and μ from the object function of K-mean

We can optimize the parameter separately,the approach is set one parameters as known and we optimize the other one.

 

Does the K-means must converge?

l=\sum_{i=1}^{N} \sum_{k=1}^{k} \gamma_{i k}\left\|x_{i-} \mu_{k l}\right\|_{2}^{2}

Alternative Optimization

1)fix {uk} to solve {γik}

calculate the distance between sample to the center points

tag each sample to the specific cluster

2) Fix{γik} to recalculate center{uk}

l=\sum_{k=1}^{k} \sum_{i: i \in \text { cluster} \atop-k}\left\|x_{i}-\mu_{k}\right\|_{2}^{2}

It is an optimization problem, the step 1 well let our object function become small.

the step 2 will let our object function become small.

Coordinate Descent

EM Algorithm(GMM)

Gaussian Mixer Model

K-Means named hard cluster, GMM - soft cluster

 

The different start center point will result different result

Because we could only obtain the local optima due to the object function of k-mean is not convex

 

How to choose K for K-mean?

Recall the loss function

l=\sum_{i=1}^{N} \sum_{k=1}^{k} \gamma_{i k}\left\|x_{i-} \mu_{k l}\right\|_{2}^{2}

base on the change of the L to choose the K

 

Vector Qualization

This method can be used to compress the image data. The core concept is that we use the k-mean to present the similary color pixels

#import packagesfrom pylab import imread, imshow, figure, show, subplotimport numpy as npfrom sklearn.cluster import KMeansfrom copy import deepcopy# read the image dataimg = imread('Tulips.jpg')imshow(img)show()# convert three dimension tensor into two dimension matrixpixel = img.reshape(img.shape[0] * img.shape[1], 3)pixel_new = deepcopy(pixel)print (img.shape)# construct K-means modelmodel = KMeans(n_clusters = 3)labels = model.fit_predict(pixel)palette = model.cluster_centers_for i in range(len(pixel)):    pixel_new[i,:] = palette[labels[i]]# reshow the compressed imageimshow(pixel_new.reshape(img.shape[0], img.shape[1], 3))show()

 

原始图像,

进行三色压缩后的效果(K = 3):

进行十六色 (K-means for K = 16)压缩后的效果:

转载地址:http://cvbg.baihongyu.com/

你可能感兴趣的文章
MySql用户以及权限的管理。
查看>>
MySQL用户权限配置:精细控制和远程访问的艺术!------文章最后有惊喜哦。
查看>>
mysql用户管理、常用语句、数据分备份恢复
查看>>
MySQL留疑问:left join时选on还是where?
查看>>
mysql登陆慢问题解决
查看>>
MySQL的 DDL和DML和DQL的基本语法
查看>>
mysql的 if else , case when then, IFNULL
查看>>
MySQL的10种常用数据类型
查看>>
MySQL的btree索引和hash索引的区别
查看>>
mysql的cast函数
查看>>
MySql的CRUD(增、删、改、查)操作
查看>>
MySQL的DATE_FORMAT()函数将Date转为字符串
查看>>
MySql的Delete、Truncate、Drop分析
查看>>
MySQL的Geometry数据处理之WKB方案
查看>>
MySQL的Geometry数据处理之WKT方案
查看>>
mysql的grant用法
查看>>
Mysql的InnoDB引擎的表锁与行锁
查看>>
mysql的InnoDB引擎索引为什么使用B+Tree
查看>>
MySQL的InnoDB默认隔离级别为 Repeatable read(可重复读)为啥能解决幻读问题?
查看>>
MySQL的insert-on-duplicate语句详解
查看>>