博客
关于我
Algorithm: K-Means
阅读量:373 次
发布时间:2019-03-04

本文共 3098 字,大约阅读时间需要 10 分钟。

K-Means????

K-Means ????

K-Means???????????????????????????????????????????????????????????????????????????????????????????

K-Means ?????

K-Means????????????????????

  • ???????????????????
  • ???????????????????????????????????????
  • ????????????????????????????
  • ?????????????????????????????????????????????
  • K-Means ?????

    K-Means???????????????

  • ??????????????????????????????
  • ?????????????????????????????
  • ???????CRM???????????????????????
  • K-Means ?????

    Python ??????

    # ??????from copy import deepcopyimport numpy as npimport pandas as pdimport matplotlib.pyplot as plt# ????k = 3# ?????????X = np.random.random((200, 2)) * 10# ??????????C_x = np.random.choice(range(0, int(np.max(X[:, 0])), size=k, replace=False))C_y = np.random.choice(range(0, int(np.max(X[:, 1])), size=k, replace=False))C = np.array(list(zip(C_x, C_y)), dtype=np.float32)# ????????print("????????", C)# ????????????plt.scatter(X[:, 0], X[:, 1], c='#050505', s=7)plt.scatter(C[:, 0], C[:, 1], marker='*', s=300, c='g')plt.show()

    ??????

    # ?????C_old = np.zeros(C.shape)clusters = np.zeros(len(X))# ????????def dist(a, b, ax=1):    return np.linalg.norm(a - b, axis=ax)# ???????????error = dist(C, C_old, None)while error != 0:    # ???????    for i in range(len(X)):        distances = dist(X[i], C)        clusters[i] = np.argmin(distances)        # ????????    C_old = deepcopy(C)        # ??????    for i in range(k):        points = [X[j] for j in range(len(X)) if clusters[j] == i]        C[i] = np.mean(points, axis=0)        # ????    error = dist(C, C_old, None)    # ??????    colors = ['r', 'g', 'b', 'y', 'c', 'm']    fig, ax = plt.subplots()    for i in range(k):        points = np.array([X[j] for j in range(len(X)) if clusters[j] == i])        ax.scatter(points[:, 0], points[:, 1], s=7, c=colors[i])    ax.scatter(C[:, 0], C[:, 1], marker='*', s=200, c='#050505')    plt.show()

    K-Means ?????

    1. ????

    K-Means??????????????????????????????????????????????

    2. ?????

    ??K-Means???????????????????????????????????????????????????????????????????????????????

    K-Means ????????

    1. K-Means vs Hard Clustering

    K-Means?????????????????????????????????????????Soft Clustering????GMM?????????????????????

    2. K-Means ????

  • ????????K-Means????????????????????????????
  • ??????K-Means?????????O(n^2k)?????????????????
  • K-Means ?????????

    ??????????????K-Means??????????????????????

  • ??????
    img = imread('Tulips.jpg')imshow(img)show()
  • ??K-Means??
    model = KMeans(n_clusters=3)labels = model.fit_predict(pixel)
  • ??????
    palette = model.cluster_centersfor i in range(len(pixel)):    pixel_new[i, :] = palette[labels[i]]
  • ????????
    imshow(pixel_new.reshape(img.shape[0], img.shape[1], 3))show()
  • K-Means ?????

  • ????????

    K-Means????????????????????????????????????????????

  • ??????

    ??????????????????????????????????????????????????????

  • ?????

    ?????????K-Means????????????????????????????????????????????

  • K-Means ??????

    ??K-Means?????????????????????????

  • ??????????????????????????
  • ????????????????K-Means??????????????????
  • ???????K-Means??????????????????????????
  • ??

    K-Means??????????????????????????????????????????????????????????????????K-Means?????????

    转载地址:http://cvbg.baihongyu.com/

    你可能感兴趣的文章
    NLP 项目:维基百科文章爬虫和分类【01】 - 语料库阅读器
    查看>>
    NLP_什么是统计语言模型_条件概率的链式法则_n元统计语言模型_马尔科夫链_数据稀疏(出现了词库中没有的词)_统计语言模型的平滑策略---人工智能工作笔记0035
    查看>>
    NLP学习笔记:使用 Python 进行NLTK
    查看>>
    NLP的神经网络训练的新模式
    查看>>
    NLP采用Bert进行简单文本情感分类
    查看>>
    NLP问答系统:使用 Deepset SQUAD 和 SQuAD v2 度量评估
    查看>>
    NLP:使用 SciKit Learn 的文本矢量化方法
    查看>>
    Nmap扫描教程之Nmap基础知识
    查看>>
    Nmap端口扫描工具Windows安装和命令大全(非常详细)零基础入门到精通,收藏这篇就够了
    查看>>
    NMAP网络扫描工具的安装与使用
    查看>>
    NMF(非负矩阵分解)
    查看>>
    nmon_x86_64_centos7工具如何使用
    查看>>
    NN&DL4.1 Deep L-layer neural network简介
    查看>>
    NN&DL4.3 Getting your matrix dimensions right
    查看>>
    NN&DL4.8 What does this have to do with the brain?
    查看>>
    nnU-Net 终极指南
    查看>>
    No 'Access-Control-Allow-Origin' header is present on the requested resource.
    查看>>
    NO 157 去掉禅道访问地址中的zentao
    查看>>
    no available service ‘default‘ found, please make sure registry config corre seata
    查看>>
    no connection could be made because the target machine actively refused it.问题解决
    查看>>