博客
关于我
Algorithm: K-Means
阅读量:373 次
发布时间:2019-03-04

本文共 4531 字,大约阅读时间需要 15 分钟。

K-Means

The K-Means is  an unsupervised learning algorithm which has the input sample data without label.

Sometimes we use the CRM system to manage the relationship between the customer. The concept is clustering

 

 

The application of clustering: 

 

It can also be used to compress the images

 

The concept of K-mean:

1. rearange each sample to the nearest category by compare the distances.

2. for each category we calculate the center point.

For K = 2

We choose two center point randomly

We clustering each example to each category respect to the center points.

Then we recalculate the center point by the calculating the mean coordinate of each points of the respect cluster(category.)

We use the new center points for clustering.

Then we recalculate the center point again.

And we do the cluster again:

If the new center point is the same as the previous iteration, then we can stop the calculation for converge.

 

Python Implementation for K-Mean

# import packagefrom copy import deepcopyimport numpy as npimport pandas as pdimport matplotlib.pyplot as plt# set paramter k for K-meansk = 3# randomize the center point. and save the result into CX = np.random.random((200, 2)) * 10C_x = np.random.choice(range(0, int(np.max(X[:, 0]))), size = k, replace = False)C_y = np.random.choice(range(0, int(np.max(X[:, 1]))), size = k, replace = False)C = np.array(list(zip(C_x, C_y)), dtype = np.float32)print("The init center point is :")print(C)# plot the center pointplt.scatter(X[:, 0], X[:, 1], c = '#050505', s = 7)plt.scatter(C[:, 0], C[:, 1], marker = '*', s = 300, c = 'g')plt.show()

 

# store the previous center pointC_old = np.zeros(C.shape)clusters = np.zeros(len(X))# calculate the distancedef dist(a, b, ax = 1):    return np.linalg.norm(a - b, axis = ax)error = dist(C, C_old, None)# iteration for K-mean clustering until converge(that is the error = 0)while error != 0:    # Assigning each value to its closest cluster    for i in range(len(X)):        distances = dist(X[i], C)        category = np.argmin(distances)        clusters[i] = category        # We save the old center points    C_old = deepcopy(C)    # and calculate the new center points    for i in range(k):        points = [X[j] for j in range(len(X)) if clusters[j] == i]        C[i] = np.mean(points, axis = 0)    error = dist(C, C_old, None)# plot the clusterscolors = ['r', 'g', 'b', 'y', 'c', 'm']fig, ax = plt.subplots()for i in range(k):    points = np.array([X[j] for j in range(len(X)) if clusters[j] == i])    ax.scatter(points[:, 0], points[:, 1], s = 7, c = colors[i])ax.scatter(C[:, 0], C[:, 1], marker = '*', s = 200, c = '#050505')plt.show()

 

K-Means in detail

 

What is the object function os K-mean?

At first ,we don't known the cluster and the center point, how do we define the loss function?

we obtain two parameters γ and μ from the object function of K-mean

We can optimize the parameter separately,the approach is set one parameters as known and we optimize the other one.

 

Does the K-means must converge?

l=\sum_{i=1}^{N} \sum_{k=1}^{k} \gamma_{i k}\left\|x_{i-} \mu_{k l}\right\|_{2}^{2}

Alternative Optimization

1)fix {uk} to solve {γik}

calculate the distance between sample to the center points

tag each sample to the specific cluster

2) Fix{γik} to recalculate center{uk}

l=\sum_{k=1}^{k} \sum_{i: i \in \text { cluster} \atop-k}\left\|x_{i}-\mu_{k}\right\|_{2}^{2}

It is an optimization problem, the step 1 well let our object function become small.

the step 2 will let our object function become small.

Coordinate Descent

EM Algorithm(GMM)

Gaussian Mixer Model

K-Means named hard cluster, GMM - soft cluster

 

The different start center point will result different result

Because we could only obtain the local optima due to the object function of k-mean is not convex

 

How to choose K for K-mean?

Recall the loss function

l=\sum_{i=1}^{N} \sum_{k=1}^{k} \gamma_{i k}\left\|x_{i-} \mu_{k l}\right\|_{2}^{2}

base on the change of the L to choose the K

 

Vector Qualization

This method can be used to compress the image data. The core concept is that we use the k-mean to present the similary color pixels

#import packagesfrom pylab import imread, imshow, figure, show, subplotimport numpy as npfrom sklearn.cluster import KMeansfrom copy import deepcopy# read the image dataimg = imread('Tulips.jpg')imshow(img)show()# convert three dimension tensor into two dimension matrixpixel = img.reshape(img.shape[0] * img.shape[1], 3)pixel_new = deepcopy(pixel)print (img.shape)# construct K-means modelmodel = KMeans(n_clusters = 3)labels = model.fit_predict(pixel)palette = model.cluster_centers_for i in range(len(pixel)):    pixel_new[i,:] = palette[labels[i]]# reshow the compressed imageimshow(pixel_new.reshape(img.shape[0], img.shape[1], 3))show()

 

原始图像,

进行三色压缩后的效果(K = 3):

进行十六色 (K-means for K = 16)压缩后的效果:

转载地址:http://cvbg.baihongyu.com/

你可能感兴趣的文章
Netty工作笔记0070---Protobuf使用案例Codec使用
查看>>
Netty工作笔记0071---Protobuf传输多种类型
查看>>
Netty工作笔记0072---Protobuf内容小结
查看>>
Netty工作笔记0073---Neety的出站和入站机制
查看>>
Netty工作笔记0074---handler链调用机制实例1
查看>>
Netty工作笔记0075---handler链调用机制实例1
查看>>
Netty工作笔记0076---handler链调用机制实例3
查看>>
Netty工作笔记0077---handler链调用机制实例4
查看>>
Netty工作笔记0078---Netty其他常用编解码器
查看>>
Netty工作笔记0079---Log4j整合到Netty
查看>>
Netty工作笔记0080---编解码器和处理器链梳理
查看>>
Netty工作笔记0081---编解码器和处理器链梳理
查看>>
Netty工作笔记0082---TCP粘包拆包实例演示
查看>>
Netty工作笔记0083---通过自定义协议解决粘包拆包问题1
查看>>
Netty工作笔记0084---通过自定义协议解决粘包拆包问题2
查看>>
Netty工作笔记0085---TCP粘包拆包内容梳理
查看>>
Netty常用组件一
查看>>
Netty常见组件二
查看>>
Netty应用实例
查看>>
netty底层——nio知识点 ByteBuffer+Channel+Selector
查看>>